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The devfile: :create function creates a device file via the mknod APL. The fype argument
specifies that a character (rype value is ) or a block (rype value is b) device file is to be cre-
ated. The major and minor device numbers, access permission, and the file name of a device
file are also specified via the major_no, minor_no, prot, and fn arguments. The return value of
the devfile: :create function is that of the mknod APL

After a device file is created, it can be opened, read, written to, or closed like regular
files. Thus, devfile inherits all the fstream functions for data access to its objects. However,
random data access is illegal for character device files. Thus, the devfile::tellg and dev-
file::seekg functions work for block device files only.

The following test_devfile.C program creates a character device file called /dev/tty with
major and minor device numbers of 30 and 15, respectively. It then opens it for write., writes
data to it, and, finally, closes the file.

#include “devfile.h”

int main()

{ // Example for devfile
devfile ndev](“/dev/ity”, ios::out,0777);// open the device file for write
ndev << “This is a sample output string\n";// write data to the file
ndev.close(); // close the device file

7.12 Symbolic Link File Class

A symbolic link file object differs from a filebase object in the way it is created. Also, a
new member function called ref_path is provided to depict the path name of a file to which
the symbolic link object refers. The following symfile class encapsulates all UNIX symbolic
link file type properties:

#ifndef SYMFILE_H /* This is symfile.h header */
#define SYMFILE_H

#include “filebase.h”

/* A class to encapsulate UNIX symbolic link file objects’ properties */
class symfile : public filebase

{
public:
symfil() {\
~symfile() {}
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int setlink( const char* old_link, const char* new_link )
{ filename=new
char(strlen(new_link)+1];
strepy(filename,new_link);
return symlink(old_link,new_link);

void open( int mode ) { fstream::open(filename,mode); };
const char* ref_path() { static char buf[256];
if (readlink(filename,buf,256)
return buf;
else return (char*)-1;

I
X
#endif /* symfile.h */

The symfile::create function creates a symbolic link file via the symlink API. The
new_link argument is a new symbolic link file path name to be created, and the old_link is the
path name of the original link. The return value of the symfile::create function is that of the
symlink APL

After a symbolic link file is created, it can be opened, read, written to, or closed like
any regular files. Thus, symfile inherits all the fstream functions for data access to its objects.
However, all these operations occur on the nonlink file to which the symbolic link refers. Fur-
thermore, the symfile::ref_path function is defined for users to query the path name of a non-
link file to which a symfile object references.

The following test_symfile.C program creates a symbolic link file call /usr/xyz/sym.ink
that references a file called /usr/file/chap10. It opens the symbolic link file and reads it con-
tent. Then, it echoes the link reference path name, and closes the file:

#include “symfile.h”

int main()

{ // Examnle for symfile
char buf[256];
symfile nsym;

nsym.setlink(“/usr/file/chap10”,"/usr/xyz/sym.Ink”);
nsym.open( ios:in );
while(nsym.getline(buf,256))

cout << buf << end|; // read /usr/file/chap10
cout << nsym.ref_path{) << endi; ' echo “/ustr/file/chap10”
nsym.close(); // close the symbolic link file
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7.13 File Listing Program

An an example to illustrate the use of the filebase class and its subclasses, the following
Istdir.C program reimplements the UNIX Is command to list file attributes of all path name
arguments specified for the program. Furthermore, if an argument is a directory the program
will list the file attributes of all files in that directory and any subdirectories underneath it. If a
file is a symbolic link, the program will echo the path name to which the link refers. Thus, the
program behaves like the UNIX Is -IR command.

#include “filebase.h”
#include “symfile.h”
#tinclude “dirfile.n”

void show_list( ostream& ofs, const char* fname, int deep),

/* this is defined in test_Is.C. Section 7.1.10 */
extern void long_list( ostream& ofs, char* fn );

/* program to implement the UNIX Is -IR command */
void show_dir( ostream& ofs, const char* fname )

{
dirfile dirObj(fname);
char buf[256];
ofs << “\nDirectory: “ << fname << “\n”";
while (dirObj.read(buf,256)) // show all files in a directory
show_list(ofs, buf,0);
dirObj.seekg(0); // reset file pointer to beginning
while (dirObj.read(buf,256))  { /I Look for directory files
filebase fObj(buf,ios::in,0755); // define a filebase object
if (fObj.file_type==DIR_FILE)  // show sub-dir info
show_dir(ofs,buf);
fObj.close();
}
dirObj.close();
}

void show_list( ostream& ofs, const char* fname, int deep)

{

long_list( ofs, fname);
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filebase fobj(fname,ios::in,0755);

if (fobj.file_type()==SYM_FILE) { // symbolic link file
symfile *symObj = (symfile*)fobj; /" defing a symfile object
ofs << “ -> “ << symObj->ref_path() << endl;// show reference path
) ‘ _
eise if (fobj.file_type() == DIR_FILE && deep)// directory file
show_dir( ofs, fname ); // show directory content
} _
int main( int argc, char* argv(])
{
while (--argc > 0) show_list( cout , *++argv, 1);
return O;
}

The above program is similar to the program in Section 7.1.10, except that it echoes
symbolic link references and lists directory contents recursively. The main function processes
each command line argument by calling the show_file function to display file attributes of
each argument to the standard output. The deep argument of show_file specifies, if its value is
nonzero, that when a fname argument is a directory file, show_file should call the show_dir
function to list the directory content. When show_file is called from main, the actual value of
deep is setto 1. '

The show_dir function is called to display the content of a directory file. It first creates
a dirfile object to be associated with a directory whose name is specified by fname. It then
calls show_file to list the file attributes of each file in that directory. Note that in this first pass,
show_file is called with the actual argument of deep set to zero, so that show_file will not
traverse any subdirectory by calling show_dir. After the first pass has completed, show_dir
will scan a given directory a second time and looks for subdirectory files. For each subdirec-
tory file found, show_dir will call itself recursively to list the content of the sub-directory.
This is the same behavior as the UNIX Is -IR command.

For example, look at the following directory structure:

l
Xyz a.out a_symink

prog.h prog.c
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Summary

Assuming the above program has been compiled to an executable file called Istdir, the
following commands and their expected output are:

% CC -o Istdir Istdir.C

% Istdir tc

-r-x-r-xr--x 1 util
prwxrwxrwx 1 util
-> Jusr/dsg/unix.Ink

drwxr-x--x 1 util
Directry: xyz
-TW-T--F-- 1 util

prwxrwxrwx 1 util

7.14 Summary

class
class

class

class
class

1234 Dec 8, 1993 a.out
122 Apr 11, 1994 a_symlink

234 Jan 17, 1994 xyz

814 Dec 18, 1993prog.c
112 May 21, 1994prog.h

This chapter depicts the UNIX and POSIX file APIs. These APIs are used to create,
>pen, read, write, and close all types of files in a system: regular, directory, device, FIFO, and
symbolic link files. Furthermore, a set of C++ classes are defined to encapsulate the proper-
ties and functions of all file types, so that users can use these classes to manipulate files with
the same interface as the iostream class. These classes are portable on all UNIX and POSIX
systems, except for the symbolic link file class (symfile), which is not yet defined in the

POSIX.1 standard

The inheritance hierarchy of all the file classes defined in the chapter is:

jostream

l

fstream

|

filebase

\
regfile

|

devfile

v v

pipefile symfile

File objects are manipulated by processes in an operating system. The UNIX and
POSIX APIs for process creation and control are described in the next chapter.
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UNIX Processes

Aprocess is a program (e.g., a.out) under execution in a UNIX or POSIX system.
For example, a UNIX shell is a process that is created when a user logs on to a system. More-
over, when a user enters a command cat foo to a shell prompt, the shell creates a new process.
In UNIX terminology, this is a child process, which executes the car command on behalf of
the user. When a process creates a child process, it becomes the parent process of the child.
The child process inherits many attributes from its parent process, and it is scheduled by the
UNIX kemel to run independently from its parent.

By being able to create multiple processes that run concurrently, an operating system
can serve multiple users and perform multiple tasks concurrently. Thus, process creation and
management are the cornerstone of a multiuser and multitasking operating system such as
UNIX. Furthermore, the advantages of allowing any process to create new processes in its
course of execution are: '

1. Any user can create multitasking applications.

2. Because a child process executes in its own virtual address space, its success or
failure in execution will not affect its parent. A parent process can also query the
exit status and run-time statistics of its child process after it has terminated.

3. Itis very common for a process to create a child process that will execute a new
program (e.g., the spell program). This allows users to write programs that can
call on any other program to extend their functionality withoui the need to incor-
porate any new source code.
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This chapter will explain the UNIX kemnel data structures that support process creation
and execution, the system call interface for process management, and a set of examples to
demonstrate multitasking programs in UNIX.

8.1 UNIX Kernel Support for Processes

The data structure and execution of processes are dependent on operating system
implementation. In the following, the process data structure and operating system support in
the UNIX System V will be described as an illustration.

Process Table kernel region table

per-process region table

file descriptor table gt
. Text
current directory

root

Data

i

| (_paa )
)

i

} per -process u-area Stack

i

A Process /

Figure 8.1 A UNIX process data structure

As shown in Figure 8.1, a UNIX process consists minimally of a text segment, a data
segment, and a stack segment. A segment is an area of memory that is managed by the system
as a unit. A text segment contains the program text of a process in machine-executable
instruction code format. A data segment contains static and global variables and their corre-
sponding data. A stack segment contains a run-time stack. A stack provides storage for func-
tion arguments, automatic variables, and return addresses of-all active functions for a process
at any time.

A UNIX kernel has a Process Table that keeps track of all active processes. Some of the
processes belong to the kernel. They are called system processes. The majority of processes
are associated with the users who are logged in. Each entry in the Process Table contains
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pointers to the text, data, stack segments and the U-area of a process. The U-area is an exten-
sion of a Process Table entry and contzins other process-specific data, such as the file descrip-
tor table, current root and working directory inode numbers, and a set of system-imposed
process resource limits, etc.

All processes in a UNIX system, except the very first process (process 0) which is cre-
ated by the system boot code, are created via the fork system call. After a fork system call,
both the parent and child processes resume execution at the return of the fork function.

Process Table ___ \ kernel region
_-—‘h\b

m"</

\ file desc. %\ ——>

table r——

7

» file desc.
. ble
Child % @

i
=

Figure 8.2 Data Structure of Parent and Chid Processes after Fork

File Table

As shown in Figure 8.2, when a process is created by fork, it contains duplicated copies
of the text, data, and stack segments of its parent. Also, it has a file descriptor table that con-
tains references to the same opened files as its parent, such that they both share the same file
pointer to each opened file. Furthermore, the process is assigned the following attributes
which are either inherited from its parent or set by the kernel:

« A real user identification number (rUID): the user ID of a user who created the par-
ent process. This is used by the kernel to keep track of who creates which processes
on a system
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A real group identification number (rGID): the group ID of a user who created the
parent process. This is used by the kemnel to keep track of which group creates which
processes on a system .

An effective user identification number (eUID): this is normally the same as the real
UID, except when the file that was executed to create the process has its set-UID
flag turned on (via the chmod command or API). In that case, the process eUID will
take on the UID of the file. This allows the process to access and create files with the
same privileges as the program file owner :

An effective group identification number (eGID): this is normally the same as the
real GID, except when the file which was executed to create the process has its set-
GID flag turned on (via the chmod command or API). In that case, the process eGID
will take on the GID of the file This allows the process to access and create files
with the same privileges as the group to which the program file belongs

Saved set-UID and saved set-GID: these are the assigned eUID and eGID, respec-
tively, of the process

Process group identification number (PGID) and session identification number
(SID): these identify the process group and session of which the process is member
Supplementary group identification numbers: this is a set of additional group IDs for
a user who created the process

Current directory: this is the reference (inode number) to a working directory file
Root directory: this is the reference (inode number) to a root directory file

Signal handling: the signal handling settings. See the next chapter for an explanation
of signals

Signal mask: a signal mask that specifies which signals are to be blocked

Umask: a file mode mask that is used in creation of files to specify which accession
rights should be taken out

Nice value: the process scheduling priority value

Controlling terminal: the controlling terminal of the process

In addition to the above attributes, the following attributes are different between the
parent and child processes:
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Process identification number (PID): an integer identification number that is unique
per process in an entire operating system

Parent process identification number (PPID): the parent process PID

Pending signals: the set of signals that are pending delivery to the parent process.
This is reset to none in the child process

Alarm clock time: the process alarm clock time (as set by the alarm system call) is
reset to zero in the child process

File locks: the set of file locks owned by the parent process is not inherited by the
child process
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After fork, a parent process may choose to suspend its execution until its child process
terminates by calling the wait or waitpid system call, or it may continue execution indepen-
dently of its child process. In the latter case, the parent process may use the signal or sigac-
tion function (as described in Chapter 9) to detect or ignore the child process termination.

A process terminates its execution by calling the _exit system call. The argument to the
_exit call is the exit status code of the process. By convention, an exit status code of zero
means that the process has completed its execution successfully, and any nonzero exit code
indicates failure has occurred.

A process can execute a different program by calling the exec system call. If the call
succeeds, the kernel will replace the process’s existing text, data, and stack segments with a
new set that represents the new program to be executed. However, the process is still the same
process (the process ID and parent process ID are the same), and its file descriptor table and
opened directory streams remain mostly the same (except that those file descriptors which
have their close-on-exec flag set via the fcntl system call will be closed upon exec’ing). Thus,
calling exec is like a person changing jobs. After the change, the person still has the same
name and personal identifications, but is now working on a different job than before.

When the exec’ed program completes its execution, it terminates the process. The exit
status code of the program may be polled by the process’s parent via the wait or waitpid func-
tion.

fork and exec are commonly used together to spawn a subprocess to execute a different
program. For example, an UNIX shell executes each user command by calling fork and exec
to execute the requested command in a child process. The advantages of this method are:

* A process can create multiple processes to execute multiple programs concurrently
« Because each child process executes in its own virtual address space, the parent pro-

cess is not affected by the execution status of its child process

Two or more related processes (parent to child, or child to child with the same parent)
may communicate with others by setting up unnamed pipes among them. For unrelated pro-
cesses, they can communicate using named pipe or interprocess communication methods, as
described in Chapter 10.

8.2 Process APls

8.2.1 fork, vfork

The fork system call is used to create a child process. The function prototype of fork is:
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#ifdef _POSIX_SOURCE
#include <sys/stdtypes.h>
#else

#include <sys/types.h>
#endif

pid_t Jork ( void );

The fork function takes no arguments, and it returns a value of type pid_t (defined in

<sys/types.h>). The result of the call may be one of the following: o

* The call succeeds. A child process is created, and the function returns the child pro-
cess-ID to the parent. The child process receives a zero return value from fork

* The call fails. No child process is created, and the function sets errno with an error
code and returns a -1 value

The common causes of fork failure and the corresponding errno values are:

Errno value Meaning

ENOMEM There is insufficient memory to create the new pro-
cess

EAGAIN The number of processes currently existing in a

system exceeds a system-imposed limit, so try the
call again later

There are system-turnable limits on the maximum number of processes that can be cre-
ated by a single user (CHILD_MAX) and the maximum number of processes that can exist
concurrently system-wide (MAXPID). If either of these limits is exceeded when fork is
called, the function will return a failure status. The MAXPID and CHILD_MAX symbols are
defined in the <sys/param.h> and <limits.h> headers, respectively. Furthermore, a process
may obtain the CHILD_MAX value via the sysconf function:

int child_max = sysconf ( _SC_CHILD_MAX );

If a fork call succeeds, a child process is created. The data structure of the parent and
child processes after fork are shown in Figure 8.2. Both the child and the parent process will
be scheduled by the UNIX kernel to run independently, and the order of which process will
run first is implementation-dependent. Furthermore, both processes will resume their execu-
tion at the return of the fork call. After the fork call, the return value is used to distinguish
whether a process is the parent or the child. In this way, the parent and child processes can do
different tasks concurrently.
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The following test_fork.C program illustrates the use of fork. The parent process
invokes fork to create a child process. If fork returns -1, the system call fails, and the parent
process calls perror to print a diagnostic message to the standard error. On the other hand, if
fork succeeds, the child process, when executed, will print the message Child process created
to the standard output. It then terminates itself via the rerurn statement. Meanwhile, the par-
ent will print the message Parent process after fork and will then gdit.

#include <iostream.h>
#include <stdio.h>
#include <unistd.h>
int main()
{
pid_t child_pid;
cout << “PID: “ << getpid() << “, parent: “ << getppid() << endl;
switch (chidl_pid=fork()){
case (pid_t)-1:
perror(“fork”); /* fork fails */
break;
case (pid_t)0:
cout << “Child created: PID: “ << getpid()
<< “, parent: “ << getppid() << endl;
exit(0);
default: cout << “Parent after fork. PID: “ << getpid()
<< “ child PID: “ << child_pid << end};
}

return O;

}

The sample outputs of this program, when executed, may be:

% CC -o test_fork test_fork.C

% test_fork

PID: 234, parent: 123

Child created: PID: 645, parent: 234
Parent after fork. PID: 234, child PID: 645

An alternative API to fork is vfork, which has the same signature as does fork:

pid_t vfork (void);
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vfork has the similar function as fork, and it returns the same possible values as does
fork. 1t is available in BSD UNIX and System V.4. However, it is not a POSIX.1 standard.
The idea of vfork is that many programs call exec (in child processes) right after fork. Thus, it
will improve the system efficiency if the kemel does not create a separate virtual address
space for the child process until exec is executed. This is what happens in vfork: After the
function is called, the kernel suspends the execution of the parent process while the child pro-
cess is executing in the parent’s virtual address space. When the child process calls exec or
_exit, the parent will resume execution, and the child process will either get its own virtual
address space after exec or will terminate via the _exit call.

vfork is unsafe to use, because if the child process modifies any data of the parent (e.g.,
closes files or modifies variables) before it calls exec or _exit, those changes will remain
when the parent process resumes execution. This may cause unexpected behavior in the par-
ent. Furthermore, the child should not call exir or return to any calling function, because this
will cause the parent’s stream files being closed or modify the parent run-time stack, respec-
tively.

The latest UNIX systems (e.g., System V.4) have improved on the efficiency of fork by
allowing parent and child processes to share a common virtual address space until the child
calls either the exec or _exit funciion. If either the parent or the child modifies any data in the
shared virtual address space, the kernel will create new memory pages that cover the virtual
address space modified. Thus, the process that made changes will reference the new memory
pages with the modified data, whereas the couriterpart process will continue referencing the
old memory pages. This process is called copy-on-write, and it renders fork execution effi-
ciency comparable to that of vfork. Thus, vfork should be used in porting old applications to
the new UNIX systems only.

8.22 _exit

The _exit system call terminates a process. Specifically, the API will cause the calling
process data segment, stack segments, and U-area to be deallocated and all the open file
descriptors to be closed. However, the Process Table slot entry for this process is still intact so
that the process exit status and its execution statistics (e.g., total execution time, number of I/
O blocks transferred, etc.) are recorded therein. The process is now called a zombie process,
as it can no longer be scheduled to run. The data stored in the Process Table entry can be
retrieved by the process parent via the wair or waitpid system call. These APIs will also deal-
locate the child Process Table entry.

If a process forks a child process and terminates before the child, the child process will
be assigned by the kernel to be adopted by the init process (this is the second process created
after a UNIX system is booted. Its process ID is always 1). When the child process termi-
nates, its Process Table slot will be ¢cleaned up by the init process.
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The function prototype of the _exit function is:

#include <unistd.h>

void _exit. (int exit_code);

The integer argument to _exit is a process exit status code. Only the lower 8 bits of the
exit code are passed to a parent process. By convention, an exit status of zero indicates that
the process terminated successfully, and a nonzero exit status indicates a failed termination.
In some UNIX systems, the manifested constants EXIT_SUCCESS and EXIT_FAILURE are
defined in the <stdio.h> header and can be used as actual arguments to _exit for the success
and failure exit status values, respectively.

The _exit function never fails, and there is no return value.

The C library function exif is a wrapper over _exit. Specifically, exit will first flush and
close all opened streams of the calling process. It will then call any functions that were regis-
tered via the atexit function (in an order reverse to that in which functions were registered via
the atexit function) and, finally call _exit to terminate the process.

The following test_exit.C program illustrates the use of _exit. When the program is run,
it declares its existence and then terminates itself via the _exit call. It passes a 0 exit status
value to indicate that its execution has been completed successfully.

#include <iostream.h>

#include <unistd.h>

int main()

{
cout << “Test program for _exit” << endl;
_exit(0);

After this program is run, users can test the exit status of this program via the status (in
C shell) or $? (in Bourne shell) shell variable. The output of this program may be:

°% CC -o test_exit test_exit.C ; test_exit
Test program for _exit

%  echo $status

0

215



Chap. 8. Process APis

8.2.3 wait, waitpid

The wait and waitpid system calls are used by a parent process to wait for its child pro-
cess to terminate and to retrieve the child exit status (assigned by the child via _exir). Further-
more, these calls will deallocate the Process Table slot of the child process, so that the slot
can be reused by a new process. The prototypes of these functions are:

#include <sys/wait.h>

pid_t wait (int *status_p);

pid_t waitpid (pid_t child_pid, int* status_p, int options);

The wait function will suspend the parent process until either a signal is sent to the pro-
cess or one of its child processes terminates or is stopped (and its status has not yet been
reported). If a child process has already terminated or has been stopped prior to a wait call,
wait returns immediately with the child exit status (via starys_p), and the function return
value is the child PID. If, however, a parent has no unwaited-for child processes or if it is
interrupted by a signal while executing wait, the function will return a -1 value, and ermo
will contain an error code. Note that if a parent process has spawned more than one child pro-
cess, the wait call will wait for any one of these child processes to terminate.

The waitpid function is a more general function than is wait. Like wait, waitpid will
collect a child process exit code and PID upon its termination. However, with waitpid, the
caller has an option to specify which child process to wait for by specifying one of the fol-
lowing values for the child_pid argument:

Actual value for child_pid Meaning

A child process 1D Waits for the child with that PID

-1 Waits for any child

0 Waits for any child in the same process group as
the parent

A negative vaiue but not -1 Waits for any child whose process gioup ID is the

absolute value of child_pid

Furthermore, the caller can direct waitpid to be either blocking or nonblocking and to
wait for any child that is or is not stopped due to job control. These are specified via the
options argument. Specifically, if the WNOHANG flag (defined in <sys/wait.h>) is set in an
options value, the call will be nonblocking (that is, the function will return immediately if
there is no child that satisfies the wait criteria). Otherwise, the call is blocking and the parent
will be suspended as in a wait call. Furthermore, if the WNOTRACED flag is set in the
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options value, the function will also wait for a child that is stopped (but its status has not been
reported before) due to job control.

If the actual value to a status_p argument of either a wait or waitpid call is NULL, no
child exit status is to be queried. However, if the actual value is an address of an integer-typed
variable, the function will assign an exit status code (specified via the _exit API) to this vari-
able. The parent can then check the exit status code with the following macros as defined in
<sys/wait.h>:

Macro Use

WIFEXITED(*status_p) Returns a nonzero value if a child was terminated
via an _exit call, and zero otherwise

WEXITSTATUS(*status_p) Returns a child exit code that was assigned to an
_exit call. This should be called only if WIFEX-
ITED returns a nonzero value

WIFSIGNALED(*status_p) Returns a nonzero value if a child was terminated
due to signal interruption
WTERMSIG(*status_p) Returns the signal number that had terminated a

child process. This should be called only if WIF-
SIGNALED returns a nonzero value

WIFSTOPPED("status_p) Returns a nonzero value if a child process has been
stopped due to job control
WSTOPSIG(*status_p) Returns the signal number that had stopped a child

process. This should be called only if WIFS-
TOPPED returns a nonzero value

In some versions of UNIX, where the above macros are undefined, the above informa-
tion can be obtained directly from *status_p. Specifically, the seven least significant bits (bit
0 to bit 6) of *status_p are zero if a child was terminated via _exit or a signal number that ter-
minated the child. The eighth bit of *status_p is 1 if a core file has been generated due to sig-
nal interruption of the child, or O otherwise. Furthermore, if the child was terminated via
_exit, bit 8 to bit 15 of *status_p is the child exit code that was passed via _exit. The follow-
ing figure illustrates the use of the *starus_p data bits:

15 8 7 6 0
*status_p: child exit status A signal number

[
core file flag
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In BSD UNIX, the status_p argument is of type union wait*, where union wait is
defined in <sys/wait.h>. It is a union of an integer variable and a set of bit-fields. The bit-
fields are used to extract the same status information as the above macros.

If the return value of either wair or waitpid is a positive integer value, it is the child
PID. Otherwise, it is (pid_#)-1 and signifies that either no child satisfied the wait criteria or
the function was interrupted by a caught signal. Here, errno may be assigned one of the fol-
lowing values:

Errno value Meaning

EINTR Wait or waitpid returns because the system call was
interrupted by a signal

ECHILD For wait, it means the calling process has no
unwaited-for child process
For waitpid, it means either the child_pid value is
illegal or the process cannot be in a state as defined

by the options value
EFAULT The status_p argument points to an illegal address
EINVAL The options value is illegal

Both wait and waitpid are POSIX.1 standard. waitpid is not available in BSD UNIX
4.3, System V.3 and their older versions.

The following test_waitpid.C program illustrates use of the waitpid API:

#include <iostream.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int main()
{
pid_t child_pid, pid;
int status;
switch (child_pid=fork()) {
case (pid_t)-1:perror(“fork”); /* fork fails */
break;
case (pid_t)0:cout << “Child process created\n”;
_exit(15); /* terminate child */
default: cout << “Parent process after fork\n”;
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pid = waitpid(child_pid,&status, WNOTRACED);

} .
if WIFEXITED(status))

cerr << child_pid << “ exits: “ <<WEXITSTATUS(status) << end|;
else if WIFSTOPPED(status))

cerr << child_pid << “ stopped by: “ <WSTOPSIG(status)

<< endl;

else if WIFSIGNALED(status))

cerr << child_pid << “ killed by: “ <<WTERMSIG(status) << endl;
else perror(“waitpid”);
_exit(0);

}

This simple program forks a child process that acknowledges its creation and then ter-
minates with an exit status of 15. Meanwhile, the parent suspends its execution via the wait-
pid call. The parent process resumes execution after the child has terminated and the status
and child_pid variables of the parent process are assigned the child’s exit code and process
ID. The parent uses the macros defined in <sys/wait.h> to determine the execution status of
the child in the following order:

If WIFEXITED returns a nonzero value, the child was terminated via the _exit call,
and the parent extracts the child’s exit code (which is 15 in this example). via the
WEXITSTATUS macro. It then prints the value to standard error port

If WIFEXITED returns a zero value and WIFSTOPPED returns a nonzero value, the
child was stopped by a signal. The parent extracts the signal number via the
WSTOPSIG macro and prints the value to standard error port

If both WIFEXITED and WIFSTOPPED return a zero value and WIFSIGNALED
returns a nonzero value, the child was terminated by an uncaught signal. The parent
extracts the signal number via the WTERMSIG macro and prints the value to stan-
dard error port

If WIFEXITED, WIFSTOPPED, and WIFSIGNALED all return a zero value, either
the parent has no child processes or the waitpid call was interrupted by a signal.
Thus, the parent calls the perror function to print detailed diagnostics for the failure

The output of this program may be:

% CC -o test_waitpid test_waitpid.C
% test_waitpid
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Child process created
Parent process after fork
1354 exits: 15

%

8.24 exec

The exec system call causes a calling process to change its context and execute a differ-
ent program. There are six versions of the exec system call. They all have the same function
but they differ from each other in their argument lists.

The prototypes of the exec functions are:

#include <unistd.h>

int  execl (const char* path, const char* arg, ...);

int  execlp (const char* file, const char* arg, ...);

int  execle (const char* path, const char* arg, ..., const char** env);
int  execv (const char* path, const char** argy, ...);

int  execvp (const char* file, const char** argy, ...);

int  execve (const char* path, const char** argy, ..., const char **env);

The first argument to the function is-either the path name or a file name of a program to
be executed. If the call succeeds, the calling process instruction and data memory are overlaid
with the new program instruction text and data. The process starts execution at the beginning
of the new program. Furthermore, when the new program completes execution, the process is
terminated and its exit code will be passed back to its parent process. Note that, whereas fork
creates a child process that runs independently of its parent, exec does not create a new pro-
cess, but rather it changes the calling process context to execute a different program.

An exec call may fail if the program to be executed cannot be accessed or has no execu-
tion rights. Furthermore, the program named in the first argument of an exec call should be an
executable file (i.e., in a.our format). However, it is possible in UNIX to specify a shell script
name to the execlp and execvp calls, so that the UNIX kernel will execute a Bourne shell 7
bin/sh) to interpret the shell script. Because POSIX.1 does not have the notion of shells, it is
illegal to use execlp or execvp to execute shell scripts. This is really not a problem, as users
can always exec a shell and supply it with the name of a shell script that he or she wishes to
execute.

The p suffix of execlp and execvp specifies that if the actual value of a file argument
does not begin with a “/”, the functions will use the shell PATH environment variable to
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search for the file to be executed. For all the other exec functions, the actual value of their first
argument should be the path name of any file to be executed.

The arg or argv arguments are arguments for an exec’ed program. They are mapped to
the argv variable of the main function of the new program. For the execl, execlp, and execle
functions, the arg argument is mapped to argv[0], the value after arg will be mapped to
argv(1], and so on. The argument list specified in the exec call must be terminated by a
NULL value to tell the function where to stop looking for argument values. For the execv,
execvp, and execve functions, the argv argument is a vector of character strings, each string
being one argument value. The argv argument is mapped directly to the argv variable of the
main function of the new program. Thus, the / character in an exec function name specifies
that the argument values are listed in each call, whereas the v character in an exec function
name signifies that the arguments are passed in a vector format.

Note that one must supply at least two argument values to each exec call. The first value
(arg or argv[0]) is the name of a program to be exec’ed and is mapped to argv[0] of the main
function of the new program. The second mandatory argument is the NULL value that termi-
nates the argument list (for execl, execlp and execle) or the argument vectors (for execv,
execvp and execve).

The e suffix of an exec function (execle or execve) specifies that the last argument (env)
to a function call is a vector of character strings. Here, each string defines one environment
variable and its value in a Bourne shell format:

<environment_variable_name>=<value>

The last entry of env must be a NULL value to signal the end of a vector list. In non-
ANSI C environment, env will be assigned to the third parameter of the main function in the
exec’ed program. In an ANSI C environment, the main function can have only two arguments
(namely, argc and argv), and env will be mapped to the environ global variable of the exec’ed
program. For the execl, execlp, execv, and execvp functions, the environ global variable is
unchanged in the process by the exec call (note that the environ variable may be updated
using the putenv function).

If an exec call succeeds, the original process text, data, and stack segments are replaced
by new segments for an exec’ed program. However, the file descriptor table of the process
remains unchanged. Those file descriptors whose close-on-exec flags were set (by the fentl
system call) will be closed before a new program runs. Furthermore, the following process
attributes may be changed when the process executes an exee’ed program:

« Effective UID: this is changed if an exec’ed program file has its set-UID flag set
« Effective GID: this is changed if an exec’ed program file has its set-GID flag set
o Saved set-UID: this is changed if an exec’ed program file has its set-UID flag set
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* Signal handling: signals that are set up to be caught in a process are reset to accept
their default actions when the process exec’ed a new program. The user-defined sig-
nal handler functions are not present in the exec’ed program

Most programs call exec in a child process because it is desirable to continue a parent
process execution after an exec call. However, fork and exec are implemented as two separate
functions for the following reasons:

* Itis simpler to implement fork and exec separately

* It is possible for a program to call exec without fork, or fork without exec. This ren-
ders flexibility in the use of these functions

* Many programs will do some operations in child processes, such as redirect standard
/O to files, before they call exec. This is made possible by separating the fork and
exec APls

The following test_exec.C program illustrates use of the exec APIL:

#include <iostream.h>
#include <stdio.lr>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int System( const char *cmd) // emulate the C system function
{
pid_t pid;
int status;
switch (pid=fork()) {
case -1: return -1;
case 0: execl(“/bin/sh”, “sh”, “-c", cmd, 0);
perror(“execl”);
exit(errno);
}
if (waitpid(pid,&status,0)==pid && WIFEXITED(status))
return WEXITSTATUS(status);
return -1;
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int main()
{
int rc=0:
char buf[256];
do {
: cout << “sh> “ << flush;
if (\gets(buf)) break;
rc = System(buf);
} while (trc);
exit(rc);

The above program is a simple UNIX shell program. It prompts users to enter shell
commands from standard input and executes each command via the System function. The
program terminates when either user enters end-of-file (<ctrl-D>) at a “shell” prompt or the
return status of a System call is nonzero. The program differs from a UNIX shell in that its
does not support the cd command and manipulation of shell variables.

The system function emulates the C library function system. Specifically, the system
function prototype is:

int system (const char* cmd);

Both functions invoke a Bourne shell (/bin/sh) to interpret and execute a shell com-
mand that is specified via the argument cmd. A command may consist of a simple shell com-
mand or a series of shell commands separated by semicolons or pipes. Furthermore, input
and/or output redirections may be specified with the commands.

The System function calls fork to create a child process. The child process, in turn, calls
execlp to execute a Bourne shell program (/bin/sh) with the -c and cmd as arguments. The -¢
option instructs the Bourne shell to interpret and execute the cmd arguments as if they were
entered at the shell level. After cmd is executed, the child process is terminated and the exit
status of the Bourne shell is passed to the parent process, which calls the System function.

Note that the System function calls waitpid to specifically wait for the child that it
forked. This is important, as the System function may be called by a process that forked a
child process before calling System; thus, the System’ function would wait only for child pro-
cesses forked by it and not those created by the calling process.
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When the waitpid returns, the System function checks that: (1) the return PID matches
that of the child process that it forked; and (2) the child was terminated via _exit. If both con-
ditions are true, the System function returns the child exit code. Otherwise, it returns a -1 to
indicate failure status.

The system library function is similar to the Syszem function, except that the former will
include signal handling and set the errno variable witn an error code when the waitpid call
fails.

The sample output of the program may be:

% CC -o test_exec test_exec.C

% test_exec

sh> date; pwd

Sat Jan 15 18:09:53 PST 1994
/homefterry/sample

sh> echo “Hello world” | wc > foo; cat foo
1 2 12

sh> AD

8.25 pipe

The pipe system calil creates a communication channel between two related processes
(for example, between a parent process and a child process, or between two sibling processes
with a same parent). Specifically, the function creates a pipe device file that serves as a tem-
porary buffer for a calling process to read and write data with another process. The pipe
device file has no assigned name in any file system; thus, it is called an unnamed pipe. A pipe
is deallocated once all processes close their file descriptors referencing the pipe.

#include <unistd.h>

int pipe  (int  fifo[2] );

The fifo argument is an array of two integers that are assigned by the pipe API. On most
UNIX systems, a pipe is unidirectional in that fifo[0] is a file descriptor that a process can use
to read data from the pipe, and fifo/1] is a different file descriptor that a process can use to
write data to the pipe. However, in UNIX System V.4, a pipe is bidirectional and both the
fifo[0] and fifo[ 1] descriptors may e used for reading and writing data via the pipe. POSIX.1
supports both the traditional UNIX and System V.4 pipe moc=ls by not specifying the exact
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uses of the pipe descriptors. Applications that desire portability on all UNIX and POSIX Sys-
tems should use pipes as if they were unidirectional only.

Data stored in a pipe is accessed sequentially in a first-in-first-out manner. A process
cannot use Iseek to do random data access of a pipe. Data is consumed from a pipe once it is
read. '

The common method is to set up a communication channel between processes via pipe:

* Parent and child processes: the parent calls pipe to create a pipe, then forks a child.
Since the child has a copy of the parent file descriptors,. the parent and child can
communicate through the pipe via their respective fifo[0] and fifo[ 1] descriptors

* Sibling child processes: the parent calls pipe to create a pipe, then forks two or more
child processes. The child processes can communicate through the pipe via their
respective fifo[0] and fifo[ 1] descriptors

Because the buffer associated with a pipe device file has a finite size (PIPE_BUF), a
pipe already filled with data when a process tries to write to it will be blocked by the kernel
until another process reads sufficient data from the pipe to make room for the blocked process
to succeed in the write operation. Conversely, if a pipe is empty and a process tries to read
data from a pipe, it will be blocked until another process writes data into the pipe. These -
blocking mechanisms can be used to synchronize the execution of two (or more) processes.

There is no limit on how many processes can concurrently attach to either end of a
pipe. However, if two or more processes are writing data to a pipe simultaneously, each pro-
cess can write, at most, PIPE_BUF bytes of contiguous data into the pipe at a time. Consider
that when a process (for example, A) writes X bytes of data into a pipe, there is no room for ¥
bytes in the pipe. If X is larger than Y only the first ¥ bytes of data are written into the pipe,
and the process is blocked. Another process (for example, B) runs and there is room in the
pipe (due to a third process reading data from the pipe), and B writes data into the pipe. Then,
when process A resumes running, it writes the remaining X-Y bytes of data into the pipe. The
end result is that data in the pipe is interlaced between the two processes. Similarly, if two (or
more) processes attempt to read data from a pipe concurrently, it may happen that each pro-
cess reads only a portion of the desired data from the pipe.

To avoid the above drawbacks, it is conventional to set up a pipe as unidirectional com-
munication channel between only two processes, such that one process will be designated as
the sender of the pipe and the other process designated as the receiver of the pipe. If two pro-
cesses, fro example, A and B, need a bidirectional communication channel, they will create
two pipes: one for process A to write data to process B, and vice versa.
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If there is no file descriptor in the process to reference the write-end of a pipe, the pipe
write-end is considered “close” and any process attempts to read data from the pipe will
receive the remaining data. However, once all data in the pipe is consumed, a process that
attempts to read more data from the pipe will receive an end-of-file (the read system call
returns a O return value) indicator. On the other hand, if no file descriptor references the read-
end of a pipe, and the process attempts to write data into the pipe, it will receive the SIGPIPE
(broken pipe) signal from the kernel. This is because no data written to the pipe can be
retriéved by the process; thus, the write operation is considered illegal. The process that does
the write will be penalized by the signal (the default action of the signal is to abort the pro-
cess).

pipe is used by the UNIX shell to implement the command pipe (“I"") for connecting the
standard output of one process to the standard input of another process. It is also used in
implementation of the popen and pclose C library functions. The implementation of the
popen and pclose functions is described in the next section.

The return value of pipe may be 0 if the call succeeds or -1 if it fails. The possible errno
values assigned by the API and their meanings are:

Errno value Meaning
EFAULT The fifo argument is illegal
ENFILE The system file table is full

The following test_pipe.C program shows the use of pipe:

#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
int main()
{
pid_t child_pid;
int fifo[2], status;
char buf{80];

if ( pipe(fifo) == -1 ) perror( “pipe” ), exit( 1);
switch (‘child_pid = fork() ) {

case -1: perror( “fork”);
exit( 2 );
case 0: close( fifo[0] ); /* child process */

sprintf( buf, "Child %d executed\n”, getpid() );
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write( fifo[1], buf, strlen(buf)) ;
close( fifo[1] );
exit(0);

close( fifo[1]); /* parent process */

while ( read( fifo[0], buf, 80) ) cout << buf << endi;

close( fifo[0] );

if ( waitpid(child_pid,&status,0)==child_pid && WIFEXITED(status) )
return WEXITSTATUS( status );

return 3;

}

This program shows a simple use of pipe. The parent proceSs calls pipe to allocate a
pipe device file. It then calls fork to create a child process. Both the parent and child pro-
cesses can access the pipe via their own copy of the fifo variable.

In the example, the child process is designated as the sender of message to the parent,
writing the message Child <child_pid> executed to the pipe via the fifo[1] descriptor. The
getpid system call returns the child PID value. After the write, the child terminates via exir
with a zero exit code.

The parent process is designated the receiver of the pipe, and it reads the child’s mes-
sage from the pipe via the fifo/0] descriptor. Note that in the parent process, it first closes the
fifo[ 1] descriptor before it goes into a loop to read data from the pipe. This is to ensure that
when the child process closes its fifo[1] descriptor (after a write), the write end of the pipe
will be closed. The parent will eventually receive the end-of-file indicator after if has read all
messages from the child process. If the parent does not close fifo/1] before it does the read
loop, the parent will eventually be suspended in the read system call once it has read all data
from the pipe (the pipe’s write end is still opened as referenced by the parent’s fifo[1], and the
end-of-file indicator will not be seen).

~ As a general rule, the reader process should always close the pipe write-end file
descriptor before it reads data from the pipe. Similarly, the sender process should always
close the pipe write-end descriptor after it finishes writing data to the pipe. This renders the
reader process to detect the end-of-file situation.

After the parent process exits from the read loop, it calls waitpid to collect the child exit
status and terminates with either the child exit code (if the child has terminated via _exit) or a
failure exit code of 3.

The output of the program may be:

% CC test_pipe.C -o test_pipe;  test_pipe
Child 1234 executed
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8.2.6 1/O Redirection

In UNIX, a process can use the C library function freopen to change its standard input
and/or standard output ports to refer to text files instead of the console. For example, the fol-
lowing statements will change the process standard output to the file foo, so that the printf
statement will write the message Greeting message to foo to the file:

FILE *fptr = freopen(“foo”,"w”,stdout);
printf(“Greeting message to foo\n”);

Similarly, the following statements will change the process standard input port to the
file foo, dumping the entire file content to the standard output:

char buf[256];
FILE *fptr = freopen(“fo0”,’r",stdin);
while (gets(buf)) puts (buf);

The freopen funcuon actually relies on the open and dup2 system calls to do redirection
of either standard input or output. Thus, to redirect the standard input of a process from the
file src_stream, the following can be done:

#include <unistd.h>
int fd = open(“src_stream”,0_RDONLY);
if (fd'=-1) dup2(fd,STDIN_FILENO), close(fd);

The above statements first open the src_stream file for read-only, and the fd file descrip-
tion references the opened file. If the open call succeeds (fd value is not -1), the dup2 function
is called to force the STDIN_FILENO (which is defined in <unistd.h> header, and is the
standard input file descriptor value) to reference the src_stream file, then the fd descriptor is
discarded via the close system call. The result of all this is that the src_stream file is now ref-
erenced by the STDIN_FILENO descriptor of the process.

Similar system calls can also be used to change the standard output of a process to a
file:

#include <unistd.h>
int fd = open(“dest_stream”,O_WRONLY | O_CREAT | O_TRUNC,0644);
if (fd!=-1) dup2(fd,STDOUT_FILENO), close(fd);

After the above statements, any data written to the process’ standard output, via the
STDOUT_FILENO, will be written to the file dest-file.
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The freopen function can be implemented as follows:

FILE * freopen (const char* file_name, const char *mode,
FILE *old_fstream)
{
if (strcmp(mode,’r”) && strcmp(mode,’'w"))
return NULL; {* invalid mode */
int fd = open(file_name, 'mode=="7? O_RDONLY :
O_WRONLYIO_CREAT | O_TRUNC,0644),
if (fd == -1) return NULL,;
if (lold_stream) return fdopen(fd, mode);
fflush(old_fstream);
int fd2 = dup2(fd, fileno(old_fstream));
close(fd);
return (fd2 == -1) ? NULL : old_fstream;

}

In the above function, if the mode argument value is not “r” or “w” the function
returns a NULL stream pointer, as the function does not support other access modes. Further-
more, if the file named by the file_name argument cannot be opened with the specified mode,
the function will also return a NULL stream pointer. If the open call succeeds and the
old_fstream argument is NULL, there is no old stream to redirect. The function will just con-
vert the fd file descriptor to a stream pointer via the fdopen function and return it to the caller.

If, however, the old_fstream is not NULL, the function will first flush all data stored in
that stream’s IO buffer via the fflush function call, then it will use dup? to force the file
descriptor associated with the old_fstream to refer to the opened file. Note that it is invalid to
use fclose to flush and close the old_fstream here. Freopen needs to reuse the FILE record
referenced by old_fstream for the new file, but fclose will deallocate the FILE record. The
fileno macro is defined in the <stdio.h> header. It returns a file descriptor associated with a
given stream pointer. ‘

After dup2, the function closes fd, as it is no longer needed, and returns either the
old_fstream, which now references the new file, or NULL, if the dup2 call fails.

8.2.6.1 UNIX I/O Redirection

The UNIX shell input redirection (<) and output redirection (>) constructs can be
implemented with the same concept as the above, except that the redirection operation will be
done before a child process calls execs to a shell executing a user command. For example, the
following program implements the UNIX shell comumand:

% sort< foo > resuits
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The following program illustrates a mean for standard input and output redirection:

#include <unistd.h>

int main()
{
int fd, fd2;
switch (fork() ) {
case -1: perror( “fork” ), break;
case 0: if ( (fd = open(“foo”, O_RDONLY))==-1 ||
(fd2=open(“results”, O_WRONLY
O_CREATI O_TRUNC ,0644)) == -1) {
perror( “open” );
_exit( 1);

}
/* set standard input from “foo” */
if ( dup2(fd,STDIN_FILENO) == -1) _exit( 5 );
/* set standard output to “result” */
if ( dup2(fd2, STDOUT_FILENO) == -1) _exit{(6);
close( fd );
close( fd2 );
execlp( “sort”, "sort”, 0 );
perror( “execlp” ;
_exit(8);

}

return 0;

}

The above program forks a child process to execute the sort command. After the child
process is created, it redirects its standard input to be from the file foo and its standard output
to the file results. If both open calls succeed, the child process calls exec to execute the sort
command. Because there is no argument specified to the sort command, it will take data from
its standard input (the file foo). The sorted data are written to the process standard output,
which is now the result file.

It is possible to redirect standard input and/or output ports in a parent process before
fork and exec. The difference in a child process is that after fork, the parent will not use the
redirected port(s) or restore the redirected port(s) to its original source (e.g., /dev/ity). It can
then be used in the same way as before fork. It is, therefore, easier to redirect standard input
and/or output in a child process just before an exec system call.
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